MIAMI — Welcome to day one of Concorde Week! To celebrate the 10th Anniversary of the ending of commercial operations of Concorde we’re bringing you a feature each day this week on the iconic airplane. Today’s feature, goes back to the airplane’s humble beginnings at the drawing board. Don’t forget to come back tomorrow for day two, as we look at the airplane’s commercial history!

Twenty-eight years before two tunnel boring machines broke through bedrock deep under the English Channel, a team of British and French engineers set to work on a no less audacious project: building a supersonic commercial aircraft. Concorde would prove to be one of the most complex and challenging commercial aviation projects ever undertaken.

Early Years

Britain and France were individually pursuing the idea of supersonic transport aircraft with the BAC 233 and the Super-Caravelle, when in 1962 both countries signed a treaty (not a commercial agreement) agreeing to jointly pursue Concorde. The 1962 treaty would prove a lifeline for Concorde later on when the program was in jeopardy due to governmental revue in Britain. In the end it was decided that violating the treaty would cost more than continuing with development on the airplane.

France’s Super-Caravelle was envisioned as a medium range aircraft, while Britain’s original notion was that of a long-range, transatlantic capable version. After initial consultations with interested airlines, it was agreed that design would focus on a longer-range version and work on the medium-range French design was abandoned.

Concorde would set the stage for the current European model of aircraft production with design, testing, and fabrication being spread among multiple sights in Britain and France. Each country would be responsible for 50 percent of the aircraft with the British focusing on the front, rear, and engines and France focusing on the main fuselage and engines. British Aircraft Corporation and Aérospatiale were charged with designing the airframe while Rolls Royce and SNECMA developed the engine.

Design Challenges

The design challenges for Concorde were considerable. While supersonic aircraft design was not new, incorporating passenger comfort and economic viability into the equation certainly was. Previous supersonic military aircraft were not sensitive to ticket prices, fuel costs, or noise pollution, but the designers of Concorde had to take this all into account.

The iconic delta wing is best appreciated from below the airplane. (Credits: dmytrok via Flickr Creative Commons)
The iconic delta wing is best appreciated from below the airplane. (Credits: dmytrok via Flickr Creative Commons)

Of initial concern, however, was what the plane would look like and how it would be powered. A balance between propulsive efficiency (how efficient are the engines) and aerodynamic efficiency and stability led to the now-iconic delta shaped wing. The delta wing provided Concorde the least amount of drag at supersonic speeds and the highest level of handling during crucial sub-sonic periods, such as takeoff and landing.

Designers settled on an update to already proven engine, the Olympus, rather than a new engine design, which would have added time and cost to the program. A supersonic version of the Olympus engine had already been built and tested on the British TSR2 aircraft, so it became a matter of updating the Olympus 320 engine to create the Olympus 593 for Concorde.

Materials selection was also extremely important. Designers needed a metal that could withstand the heat and pressure of supersonic flight, but that was also easy to obtain and machine. After evaluating thousands of metal alloys the aluminum alloy known as RR58 was chosen as the main body metal. Once materials were chosen in 1965, one of the most stringent test regimes ever for a commercial aircraft began. From static tests to flight tests, Concorde would see over four times the amount of testing that normal subsonic aircraft receive.

The droop nose, visible here on landing following an early test flight. (Credits: Paul Townsend)
The droop nose, visible here on landing following an early test flight. (Credits: Paul Townsend)

The peculiarities of supersonic flight also led to some of the most innovative solutions. The choice of a delta wing for Concorde also led to a long, pointed nose on the aircraft. Engineers realized that this configuration would severely diminish pilot visibility during takeoff and landing, two of the most critical phases of flight. To solve this problem, a droop nose was designed to lower five degrees for takeoff and 12.5 degrees for landing. The nose was raised during the cruise phase of flight to ensure maximum aerodynamic efficiency.

Another puzzle for Concorde’s designers was the tension between the aircrafts center of gravity and center of lift. On subsonic aircraft this tension is accounted for by trim tabs, small sections on the aircraft’s control surface that adjust the aircraft’s center of gravity. Trim tabs on a supersonic aircraft would induce too much drag so a different solution was needed. Concorde engineers solved the problem by pumping fuel during flight between the main tanks and trim tanks located at the front and rear of the aircraft.

Production Challenges

With Concorde to be built in Britain and France, production managers needed a way to make assembly as efficient as possible. Normally aircraft were built from the ground up in a single factory, but doing so with Concorde would result in delays training each workforce. BAC and Aérospatiale instead opted for a new model, one that continues to be used by Boeing and Airbus today. Large components, such as the nose and forward fuselage arrived at the final assembly line with all components already installed, making final assembly much easier.

For Concorde (and any aircraft) weight is the ultimate enemy, so engineers sought every avenue to reduce the weight of the aircraft while maintaining structural stability. Concorde engineers opted for a process that allowed them to mill large pieces of the aircraft of out single pieces of metal. This saved weight and increased the structural soundness of the airplane by decreasing the number of welds and rivets required.

Taking to the Skies


The flight crew of the first British Concorde to fly poses after the flight. (Credits: Paul Townsend)
The flight crew of the first British Concorde to fly poses after the flight. (Credits: Paul Townsend)

On March 2, 1969, Concorde 001, the test aircraft based in Toulouse, France, took off and landed, completing Concorde program’s first successful flight and beginning six years of pre-certification testing. On April 9, Concorde 002 took off in Britain and October 1, 1969, saw Concorde’s first supersonic flight. Over one-third of Concorde’s flight tests occurred at supersonic speeds and a total of 5,335 flight test hours were completed in one of the most demanding flight test regimes ever undertaken. While many airlines—including Pan American, United, American, QANTAS, and Middle East Airlines—had placed orders for Concorde, only two companies, British Airways and Air France, ever finalized those orders and took delivery. On January 21, 1976, British Airways flew the first commercial service from London to Bahrain, while Air France flew from Paris to Rio de Janiero. Concorde first visited Washington and soon expanded service to New York.

The development of Concorde proved that supersonic transport was possible, but perhaps more importantly, lessons from Concorde have influenced a generation of airframers and engine makers’ design and production processes.